Video: A Quantum Mechanic’s Quest for the Perfect Conductor. MIT Assistant Professor of Physics Joseph Checkelsky designs new materials with remarkable conductive properties, by harnessing quantum mechanics and ancient tiling geometries first described by Archimedes. Here he bops superconducting magnets around like air hockey pucks and reveals how his group turned theory into matter. This new class of materials could one day help remedy energy waste caused by resistance and heat build-up in electrical devices and throughout the grid. Produced by the Museum of Science in collaboration with the Center for Integrated Quantum Materials, with support from the National Science Foundation (Award #1231319). Directed by Carol Lynn Alpert. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, CIQM, or the Museum of Science. Filmed at the Museum of Science Boston, April 7, 2018.

Thursday, 16 August 2018 15:27

Advisory Board Meeting

The external advisory board dinner will be held on October 9, 2019. Immediately following the Materials Day Poster Session.

Location: MIT Student Center, West Lounge
Cocktails will start at 6:30pm.

The advisory board meeting will be held on October 10, 2019.

Location: Bush Room, Building 10-105
8:30am - 4:30pm



Thursday, 16 August 2018 15:21

Poster Instructions

Materials Day is scheduled for October 9, 2019

Poster Setup will be in the Student Center - La Sala de Puerto Rico


REGISTRATION IS NOW CLOSED, however if you'd still like to present a poster, please feel free to show up with your poster and you will be assigned a poster board.

A board measuring 4 ft high x 6 ft wide will be provided for each poster. If additional space or utilities will be required (for models, demonstrations, prototypes, 3-D displays, etc.), please contact Maria Aglietti at 617-253-6472 or This email address is being protected from spambots. You need JavaScript enabled to view it. to let us know as soon as possible.

Please include the MRL logo on the top left side of your poster. Download the MRL logo.

Posters may be set up between 12:00 pm and 3:00 pm the day of the event. Individuals are expected to be with and remain with their poster during the Poster Session, from 4:00-6:00pm.

You must also submit an electronic copy of your poster, to be posted on our website for later viewing. Submit the electronic copy via email to Maria Aglietti (This email address is being protected from spambots. You need JavaScript enabled to view it.) by 12:00 noon on Monday, October 7, 2019.

 



Thursday, 16 August 2018 15:20

Speakers

MATERIALS DAY SPEAKERS 

AGENDA
REGISTER

Carl Thompson

Welcome
&
Introduction


Carl V. Thompson
Professor, Materials Science & Engineering
and Director,
Materials Research Laboratory

Brian Storey

Accelerating Materials Design and Discovery for Electric Vehicles


Brian Storey
Director, Accelerated Materials
Design & Discovery

TOYOTA Research Institute

Elsa Olivetti

Text and Data Mining for Material Synthesis


Elsa Olivetti
Associate Professor
Materials Science & Engineering, MIT
Rafael Gomez-Bombarelli

Learning Matter: Materials Design Through Atomistic Simulations and Machine Learning


Rafael Gomez-Bombarelli
Assistant Professor
Materials Science & Engineering, MIT
Klavs
Advancing Chemical Development Through Process Intensification, Automation, and Machine Learning


Klavs F. Jensen
Professor
Chemical Engineering and
Materials Science & Engineering, MIT
Abstract & Bio
Ju Li
Elastic Strain Engineering for Unprecedented Properties


Ju Li
Professor
Nuclear Science & Engineering and
Materials Science and Engineering, MIT
Abstract & Bio
JJ
Machine Learning in Optics: From Spectrum Reconstruction to Metasurface Design


Juejun Hu
Associate Professor
Materials Science & Engineering, MIT
Abstract & Bio
asu ozdaglar
Computing at MIT


Asu Ozdaglar
Professor & Department Head
Electrical Engineering & Computer Science, MIT
Abstract & Bio

Brian Storey

Dr. Brian Storey
Director, Accelerated Materials Design & Discovery

Toyota Research Institute


Keynote:
Accelerating Materials Design and Discovery for Electric Vehicles


Elsa Olivetti

Elsa Olivetti
Associate Professor
Department of Materials Science & Engineering, MIT

Text and Data Mining for Material Synthesis


Bombarelli Rafael Gomez-Bombarelli
Assistant Professor

Department of Materials Science & Engineering, MIT

Learning matter: Materials Design Through Atomistic Simulations and Machine Learning


Klavs Klavs F. Jensen
Professor
Department of Chemical Engineering and
Department of Materials Science & Engineering, MIT

Advanced Chemical Development Through Process Intensification, Automation, and Machine Learning


Ju Li Ju Li
Professor
Department of Nuclear Science & Engineering and
Department of Materials Science & Engineering, MIT


Elastic Strain Engineering for Unprecedented Properties


JJ

Juejun Hu
Associate Professor
Department of Materials Science & Engineering, MIT

Machine Learning in Optics: From Spectrum Reconstruction to Metasurface Design


asu ozdaglar

Asu Ozdaglar
Professor & Department Head
Department of Electrical Engineering & Computer Science, MIT

Computing at MIT


CarlCarl V. Thompson
Director
Materials Research Laboratory
Stavros Salapatas Professor of Materials Science & Engineering, MIT

Save

Save

Save

Save

Save

Thursday, 16 August 2018 15:20

Agenda

Machine Learning in Materials Research  

 MATERIALS DAY AGENDA

October 9, 2019
MIT, Kresge Theatre (W16)

Register

8:00am

Registration
Kresge Lobby, MIT Bldg. W16
8:45-9:00am


Welcome and Overview
Professor Carl V. Thompson
Director, Materials Research Laboratory, MIT
Session I:
9:00-9:30am

 

Keynote: 
Accelerating Materials Design and Discovery for Electric Vehicles
Dr. Brian Storey
Director, Accelerated Materials Design & Discovery, TOYOTA Research Institute
9:30-10:00am


Text and Data Mining for Material Synthesis
Associate Professor Elsa Olivetti
Department of Materials Science & Engineering, MIT

10:00-10:30am


Advancing Chemical Development Through Process Intensification, Automation, and Machine Learning
Professor Klavs F. Jensen

Departments of Chemical Engineering and Materials Science & Engineering, MIT

10:30-11:00am
BREAK
11:00-12:00pm Poster Previews: 2-minute talks by selected poster presenters

12:00-1:30pm

Lunch
Stratton Student Center, 3rd Floor

Twenty Chimneys/Mezzanine Lounge (Building W20)
Session II:
1:30-1:50pm


Computing at MIT
Professor Asu Ozdaglar

Department Head, Electrical Engineering & Computer Science, MIT
1:50-2:20pm


Machine Learning in Optics: From Spectrum Reconstruction to Metasurface Design
Associate Professor Juejun (JJ) Hu
Department of Materials Science & Engineering, MIT
2:20-2:50pm



Elastic Strain Engineering for Unprecedented Properties
Professor Ju Li

Departments of Nuclear Science & Eng. and Materials Science & Engineering, MIT


2:50-3:20pm



Learning matter: Materials Design Through Atomistic Simulations and Machine Learning
Assistant Professor Rafael Gomez-Bombarelli

Department of Materials Science & Engineering, MIT

3:20-3:30pm



Session Wrap Up
Professor Carl V. Thompson
Director, Materials Research Laboratory, MIT


3:35-5:30pm



Poster Session and Social
La Sala de Puerto Rico, 2nd Floor
Stratton Student Center (Building W20) 

5:30pm
Poster Awards
5:45pm
Adjourn
Thursday, 16 August 2018 15:19

Abstract

Abstract: The theme of this year’s meeting will largely be focused on imaging-enabled nanoscale research on the structure, properties and processing of materials. Invited speakers will describe new tools and methods for atomic-scale structural and chemical characterization of materials, and application of these methods to optimization of processing and properties of materials for a wide range of applications. Results from imaging-based in situ studies of vapor- and liquid-phase processes for synthesis of nanostructured materials and in situ studies of nano- and micro-scale phenomena that can be used to engineer properties of bulk materials will be presented. Development of compact high-brilliance X-ray sources that can provide synchrotron-level materials analyses with laboratory-scale systems will also be discussed. Studies of nanoscale electronic, photonic, mechanical and catalytic properties of materials will be included and discussion of prospects for development of new state-of-the-art tools and methods for imaging-based and x–ray based materials research will be featured.

We are no longer accepting registrations but you are welcome to register in person on the day of the event. Lunch will only be provided to people who pre-registered.

SPEAKERS     

Monday, 23 July 2018 21:40

Pulling drinking water out of thin air

Powered only by solar energy, a new device developed at MIT could provide relief to regions where water is scare.

With droughts plaguing much of the western United States and millions of people across the globe living without access to safe water, the need for technologies that produce clean water is greater than ever. The key, according to Evelyn Wang, the Gail E. Kendall Professor and department head for MIT’s Department of Mechanical Engineering, is in the very air we breathe.

Video by: John Freidah

"Water vapor is all around us in the air, even in arid conditions,” explains Wang. She and her team in MIT’s Device Research Laboratory have developed a device that can tap into this abundant resource and literally pull water out of thin air.

The key to the process is a powder that desiccates the air, attracting vapor directly to the porous matrix at the base of the device’s main chamber like a sponge. The vapor is then condensed into liquid and can be collected as usable water – even in dry atmospheres with as low as 20 percent humidity.

The entire process of converting the water vapor found in air into potable water can be done using only the power of the sun. “The device is completely passive,” says Wang. “There is no need to use outside power supplies which can help keep the device low-cost and efficient.”

Keeping costs low and efficiency high is one of Wang’s central goals. “We hope to develop a device that provides relief to the millions of people living in communities that lack the infrastructure needed to provide access to clean drinking water or those living in regions plagued by drought,” adds Wang.

During a field test in Tempe, Arizona, earlier this year, a small proof-of-concept prototype of the device extracted a quarter-liter of water per day per kilogram of the absorbent powder. The researchers hope to increase this output by further tailoring the powder and optimizing the device.

If the production capacity of the device can be increased, Wang’s research could have a tangible impact in places experiencing water scarcity — even in the driest of conditions.back to newsletter

Mary Beth O'Leary, Department of Mechanical Engineering
MIT News Office, July 23, 2018

Headed by Carl Thompson, the newly formed Materials Research Laboratory opens up opportunities for industrial partnerships.

Inside a high-performance integrated circuit, the copper wiring is tens of nanometers in diameter, with a coating that is a few nanometers thick. “If you took all this wiring and connected it and stretched it out, it would be about 20 kilometers long,” says Carl Thompson, professor of materials science and engineering. “And it all has to work, and it has to work for years.”

That’s just one sample, from his own work, of the challenges MIT’s enormous spectrum of materials research – ranging from quantum devices all the way to buildings and roads. “There’s one researcher in metallurgy who makes objects that weigh a ton, in the same laboratory where people make objects that weigh nanograms,” Thompson notes.

Formed in 2017 by combining two longstanding MIT centers, the Materials Research Laboratory [MRL] acts as an umbrella for this work. About 70 faculty are directly involved in the MRL. The total materials research community at MIT includes about 150 faculty, from all departments in the School of Engineering and many in the School of Science.

More videos.

Materials research spans many disciplines, and projects often bring together researchers with very different sets of expertise, Thompson says. He emphasizes that the MRL’s strengthened ability to foster and accelerate such interdisciplinary work will boost partnerships with industry, where interdisciplinary collaborations are a norm.

Incentives for collaborations

Corporate connections have been central to Thompson’s own research, which focuses primarily on making thin films, micromaterials, and nanomaterials and integrating them into microelectronic and microelectromechanical devices.

“I’ve found that I can have impact on real systems that people can buy only by being deeply involved with industry,” Thompson says. “Industry partnerships have informed not only my research but my teaching, because I can talk about why some of the more fundamental problems in materials science and engineering are very important in applications that we all depend on.”

“It’s incredibly important for students and postdocs to interact with industry, and to understand the real problems and the real constraints,” he adds. “Many things sound great in the laboratory, and many of them are great, and eventually will become part of devices and systems. But there are many steps in between, and it’s very important for everybody in an academic community to understand that.”

Thompson’s research also underlines the necessity for cross-discipline collaborations – for instance, in his current research on thin-film batteries.

“There are projections that by 2025 there will be hundreds of billions of sensors out there in the Internet of Things, and we can't do that if we have to change the batteries on all of those all the time,” he remarks. “If you can make them with batteries and an energy source, then they can be autonomous, so you don't need to ever change the battery.”

His group seeks not only to develop thin film battery materials but to integrate these materials with other components such as circuits, sensors and microelectromechanical devices.

“There’s a relationship between how you make the materials, what their structure is, and the performance of not only the material in the device but also the device itself,” Thompson says. “That work is very highly collaborative with people in other disciplines, such as electrical engineering and mechanical engineering. Materials research is critical; chemistry and physics are critical. So is understanding the factors that lead to the failure of batteries, and a mathematician here at MIT in collaboration with engineers and physical scientists has made a very important contribution to that topic.”

“In batteries, a small interdisciplinary working group has blossomed into an area of great expertise that is very highly interactive with industry,” he says. “Now the MRL is ideally positioned to help make collaborations like this happen.”

Carl Thompson ILP Sella
CARL THOMPSON
Photo, David Sella.

Merging into the MRL

The MRL combines MIT’s long-established Materials Processing Center [which was funded by industry, government agencies, and foundations] with the Center for Materials Science and Engineering [which performed basic science with experimental facilities supported by the National Science Foundation]. Geoffrey Beach, associate professor of materials science and engineering, is MRL co-director.

“One of the main reasons we did the merger was so that we could do all these complementary activities together,” Thompson says. “Academics tend to work in silos, and you want to take people out of them to see how what they do is relevant to applications that other people do. MIT is very good about that. But the MRL, which takes the two communities together, will be an even better place to make those matches.”

Importantly, the MRL is also tightly joined to the new MIT.nano facility, a 200,000-square-foot center for nanoscience and nanotechnology scheduled to open this summer, designed as a global powerhouse for research expertise and equipment. MRL researchers will be able to leverage the newly assembled MIT.nano resources that are unique within academia, Thompson says.

Even more broadly, Thompson and his colleagues are using MIT’s convening power to provide leadership outside the Institute as well. One set of efforts will be workshops in industrial sectors such as aerospace and microelectronics, which will bring companies, academics, and often government agencies to discuss research opportunities and current development challenges.

Other projects will build consortia designed to create a sustained mechanism for companies to collaborate to support pre-competitive research that benefits them all. For example, one existing consortium studies the use of carbon nanotubes to create stronger and lighter aircraft fuselage materials.

On a larger scale, MRL can sponsor meetings with industry, academia, and government to address global challenges, such as sustainable materials processing and supply of critical materials. “For instance, cobalt is mined primarily in the Congo, which is not a good situation on many levels, but are there alternatives?” Thompson says. “And how can you make material with lower energy costs, not only in making the material but over the period of its use? How do you make it in a way that doesn't affect the environment? And how do you recycle the materials?”

“There's been a real renaissance in looking at these questions, at the same times in the same laboratories where people are doing fundamental innovations at the atomic scale.,” Thompson says. “That's one of the exciting aspects of materials research.”

back to newsletterEric Bender, MIT ILP 
June 5, 2018

Feldspar Process Ciceri Allanore Web

Chemistry World featured an article Oct. 10, 2017, on Associate Professor of Metallurgy Antoine Allanore’s work to produce potassium fertilizer from potassium feldspar using an efficient hydrothermal process.

The scientific paper by by research scientist Davide Ciceri, visiting engineer Marcelo de Oliveira and Allanore, in Green Chemistry is free to access until November 20, 2017.

back to newsletter

Read more.

 

 

 

 

Friday, 20 October 2017 13:58

Developing new magnetic device materials

Summer Scholar Stephanie Bauman interns in Luqiao Liu lab synthesizing and testing manganese gallium samples for spintronic applications. 

Assistant Professor of Electrical Engineering Luqiao Liu is developing new magnetic materials known as antiferromagnets, such as manganese gallium samples, that can be operated at room temperature by reversing their electron spin and can serve as the basis for long lasting, spintronic computer memory. Materials Processing Center – Center for Materials Science and Engineering [MPC-CMSE] Summer Scholar Stephanie Bauman spent her internship making and testing these new materials.

Bauman, a University of South Florida physics major, says, “In our project we're working on the area of spintronics, anti-ferromagnetic devices that switch electron spin controlled by a current. I'm working with a lot of new equipment like the vibrating sample magnetometer and the sputterer to lay down thin films.”

“I’ve been working on a daily basis with Joe Finley, who is a graduate student here, and he’s been a explaining a lot of things to me,” Bauman notes. “It’s a very dense subject matter. And he does help me out a lot when we go to things like the X-ray diffraction room, and he shows me how the graphs can interpret how thick each layer of the thin layers of the devices are. He’s really helpful and easy to work with.”

During a visit to the lab, where she synthesizes these thin films with a special machine called a sputter deposition chamber, Bauman says, “I always go back to the checklist just to make sure I'm doing everything in the right order.” In order to take out a sample from the machine she has to follow a complicated set of steps, making sure its parts are correctly lined up and unhooking the sample holder in the main chamber. Because the chamber is pressurized, she must bring it back to everyday atmospheric pressure before taking it out. “Now that I can see that it disengaged, I go ahead and move it all the way back up,” she says. With the sample holder on a moveable arm, she can rotate it out.

Summer Scholar Stephanie Bauman 8985 DP Web
2017 MPC-CMSE Summer Scholar Stephanie Bauman holds a sample of manganese gallium, a new material known as an antiferromagnet, that can serve as the basis for long lasting, spintronic computer memory devices operated by reversing electron spin at room temperature. She interned this summer in the lab of Assistant Professor of Electrical Engineering Luqiao Liu. Photo, Denis Paiste, Materials Processing Center.

The sample moves across a gear arm out of the main chamber into transfer chamber known as a load lock. “A very, very important part of this is to make sure you close the transfer valve again, otherwise you mess up the pressure in the main chamber,” she says. After double-checking the transfer valve is closed, she brings the load lock back to sea level pressure of 760 Torr. Then she takes out the sample holder.

“As you can see the sample is really tiny. It's half a centimeter by a half a centimeter, which is what we're working with right now,” Bauman says. As she loosens the screws on the arms holding the sample in place, she notes that she has to be careful not to scratch the sample with the arms. Once safely removed, she places the sample in a special holder labeled based on when each sample was made, which sample of the day it is and its thickness. That way, she notes, “we can refer back to that in our data so that we know what thickness levels that we’re testing.”

“Sometimes you end up playing tiddlywinks. I know that some younger people don't really know what that game is, but it's what it looks like when you push down on the arm, and the sample goes flying,” Bauman cautions.

Bauman then demonstrates how a new sample is loaded into the sputterer device. “Carefully tighten the screw, making sure not to torque it too much, then you move the other arm into place,” she says. Once both arms are tightened on the sample holder, she can put the sample into the load lock. “Very simple just make sure it's lined up correctly. It's also important to make sure the O-ring is clean, and so is the lid before you put it back on. That way there's a very good seal. So that's really it for the loading, and then you just turn the vacuum pumps back on and wait until it reaches the appropriate pressure and then load it into the main chamber.”

“I'm actually a non-traditional student, which means I'm a little bit older,” Bauman explains. “I have been in the military for 20 years, and I also had a civilian career for a long time in aviation contracts. I decided to go back to school for physics, and it's really been rewarding, especially this internship.”

Bauman’s internship is supported in part by NSF’s Materials Research Science and Engineering Centers program [grant DMR-14-19807]. Participants in the Research Experience for Undergraduates, co-sponsored by the Materials Processing Center and the Center for Materials Science and Engineering, presented their results at a poster session during the last week of the program. The program ran from June 15, 2017, to August 5, 2017, on the MIT campus in Cambridge, Mass.

Denis Paiste, Materials Processing Center
Sept. 25, 2017

Summer Scholar Stephanie Bauman Poster 9176 DP Web
2017 MPC-CMSE Summer Scholar Stephanie Bauman presents her poster on her internship in the lab of Assistant Professor of Electrical Engineering Luqiao Liu making and testing new materials known as antiferromagnets, such as manganese gallium, that can serve as the basis for long lasting, spintronic computer memory devices operated by reversing their electron spin at room temperature. Photo, Denis Paiste, Materials Processing Center.
Page 1 of 2