Material could bring optical communication onto silicon chips

Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers.

MIT Silicon Light 1 press Web
Researchers have designed a light-emitter and detector that can be integrated into silicon CMOS chips. This illustration shows a molybdenum ditelluride light source for silicon photonics. Illustration, Sampson Wilcox

The huge increase in computing performance in recent decades has been achieved by squeezing ever more transistors into a tighter space on microchips.

However, this downsizing has also meant packing the wiring within microprocessors ever more tightly together, leading to effects such as signal leakage between components, which can slow down communication between different parts of the chip. This delay, known as the “interconnect bottleneck,” is becoming an increasing problem in high-speed computing systems.

One way to tackle the interconnect bottleneck is to use light rather than wires to communicate between different parts of a microchip. This is no easy task, however, as silicon, the material used to build chips, does not emit light easily, according to Pablo Jarillo-Herrero, an associate professor of physics at MIT.

Now, in a paper published in the journal Nature Nanotechnology, researchers describe a light emitter and detector that can be integrated into silicon CMOS chips. The paper’s first author is MIT postdoc Ya-Qing Bie, who is joined by Jarillo-Herrero and an interdisciplinary team including Dirk Englund, an associate professor of electrical engineering and computer science at MIT.

back to newsletter

Read more at the MIT News Office.

Helen Knight | MIT News Office
October 23, 2017