Abstract: Thin film iron garnets like bismuth-substituted yttrium iron garnet (BiYIG) can be enablers for integrated non-reciprocal photonic devices such as isolators and circulators. Polycrystalline BiYIG films were grown on silicon substrates and waveguide devices in which a YIG seed layer is placed either above or below BiYIG to promote crystallization. The films exhibit the highest reported magneto-optical figure of merit of up to 769 °dB⁻¹ at 1550 nm wavelength. Apart from photonics, single crystal BiYIG films are also interesting for next generation spintronic memory. A record current driven domain wall velocity in perpendicularly magnetized BiYIG films exceeding 4300 m/s has been demonstrated in this work.

Bismuth Iron Garnet Films for Nonreciprocal Photonics and Spintronics

Takkan Fakhru1, Lukáš Beran2, Stana Tazlaru2, Grant A. Riley3, Byunghun Lee1, Lucas Caretta1, Hans Toya Nembach3, Geoffroy S.D. Beach1, Martin Veis2 & Caroline A. Ross1

1Department of Materials Science & Engineering, MIT, 2Faculty of Mathematics and Physics, Charles University, Prague, 3National Institute of Standards and Technology (NIST)

Iron garnets (A₃Fe₅O₁₂) are great MO materials
- Substitute Y₃Fe₅O₁₂ with Bi to enhance MO properties
- Figure of Merit: Faraday Rotation/ Optical absorption
- YIG seed layer needed for crystallization of garnet on Si
- Seed layer weakens evanescent light reaching the garnet
 - Top-down crystallization preferred

Different substrate temperatures (480–650 °C) and O₂ pressures (5–100 mTorr) used to grow BiYIG
- Top-down YIG/Bi:YIG was demonstrated for the first time
- Figure-of-merit of films over an one order of magnitude higher that previous reports

Grown high quality single crystal BiYIG
- Films have Perpendicular Magnetic Anisotropy
- Ultra low damping ~ 5.3x 10⁻⁵
- 6.9nm BiYIG/Pt film has highest reported domain wall motion , 4.3km/s
- Introduced Dzyaloshinskii–Moriya interaction in BiYIG by adding Tm.